fe3o4/fdu-12: a highly efficient and magnetically separable nano-catalyst for oxidation of alcohols
Authors
abstract
a series of fe3o4 supported on mesoporous fdu-12 silica systems were prepared by the hydrothermal conditions. the surface properties of the functionalized catalyst were analyzed by a series of characterization techniques like ftir, xrd, n2 adsorption–desorption and tem. xrd and adsorption–desorption analysis shows that the mesostructure of fdu silica remains intact after fe3o4 modifications, while spectral technique show the successful immobilizing of the neat fe3o4 inside the porous silica support. fe3o4/fdu-12 system, has emerged as highly efficient and magnetically recoverable heterogeneous catalyst for selective oxidation of alcohols with h2o2 at reflux conditions because of its high specific surface area, tuneable pore size, and unique structure. the advantages of this catalytic system is mild reaction conditions, short reaction times, high product yields, easy preparation of the catalysts, non-toxicity of the catalysts, simple and clean work-up of the desired products. the wet catalyst can be removed easily, recovered and reused without significant loss of activity.
similar resources
Fe3O4/FDU-12: A highly efficient and magnetically separable nano-catalyst for oxidation of alcohols
A series of Fe3O4 supported on mesoporous FDU-12 silica systems were prepared by the hydrothermal conditions. The surface properties of the functionalized catalyst were analyzed by a series of characterization techniques like FTIR, XRD, N2 adsorption–desorption and TEM. XRD and adsorption–desorption analysis shows that the mesostructure of FDU silica remains intact after Fe3O4 modifications, wh...
full textFe3O4/FDU-12: A highly efficient and magnetically separable nano-catalyst for oxidation of alcohols
A series of Fe3O4 supported on mesoporous FDU-12 silica systems were prepared by the hydrothermal conditions. The surface properties of the functionalized catalyst were analyzed by a series of characterization techniques like FTIR, XRD, N2 adsorption–desorption and TEM. XRD and adsorption–desorption analysis shows that the mesostructure of FDU silica remains intact after Fe3O4 modifications, wh...
full textnano-rods zno as an efficient catalyst for the synthesis of chromene phosphonates, direct amidation and formylation of amines
چکیده ندارد.
[γ-Fe2O3-HAp-(CH2)3-NHSO3H] nanoparticles as a highly efficient and magnetically separable catalyst for green one-pot synthesis of 4(3H)-Quinazolinones
Quinazolinone derivatives are essential units in a wide range of relevant pharmacophores with a broad spectrum of abilities. Due to their wide range of pharmacological and therapeutic activities including anticonvulsant, anti-inflammatory, hypolipidemic, anticancer, and anti-ulcer, the synthesis of quinazolinone moieties as a privileged class of fused heterocyclic compounds, have received much ...
full text[γ-Fe2O3-HAp-(CH2)3-NHSO3H] nanoparticles as a highly efficient and magnetically separable catalyst for green one-pot synthesis of 4(3H)-Quinazolinones
Quinazolinone derivatives are essential units in a wide range of relevant pharmacophores with a broad spectrum of abilities. Due to their wide range of pharmacological and therapeutic activities including anticonvulsant, anti-inflammatory, hypolipidemic, anticancer, and anti-ulcer, the synthesis of quinazolinone moieties as a privileged class of fused heterocyclic compounds, have received much ...
full textRice husk ash (RHA): A Highly efficient solid acid catalyst for the oxidation of alcohols and trimethylsilyl, tetrahydropyranyl and methoxymethyl ethers with CrO3
A mild, efficient and fast method for the oxidation of alcohols and trimethylsilyl, tetrahydropyranyl and methoxymethyl ethers to their corresponding carbonyl compounds using CrO3 in the presence of rice husk ash (RHA) is reported. All reactions were performed at room temperature in high to excellent yields. A new, efficient and green catalyst, heterogeneous reaction conditions, easy work-up of...
full textMy Resources
Save resource for easier access later
Journal title:
iranian journal of catalysisPublisher: islamic azad university, shahreza branch
ISSN 2252-0236
volume 5
issue 1 2015
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023